Excess molar enthalpies of mixtures of a cycloalkane and an alkanol

T.M. Letcher, J. Mercer-Chalmers and A.K. Prasad

Department of Chemistry, Rhodes University, Grahamstown 6140 (South Africa) (Received 4 January 1991)

Abstract

The excess molar enthalpies, H_m^E , for the sixteen mixtures, (cyclo-C₅H₁₀+CH₃OH) and (cyclo-C_kH_{2k}+C_lH_{2l+1}OH) with k = 5, 6, 7, 8 and 10 and l = 2 and 3, were measured at 298.15 K. The H_m^E results are discussed in terms of the size of the cycloalkane ring and the length of the alkanol chain.

INTRODUCTION

In the present work, we investigated the excess molar enthalpy (H_m^E) values obtained on mixing a cycloalkane with an alkanol. Our results show the effect on H_m^E of increasing the ring size of the cycloalkane and also the effect of increasing the chain length of the alkanol. We studied the systems $(xc-C_5H_{10} + (1-x)CH_3OH)$ and $(xc-C_kH_{2k} + (1-x)C_lH_{2l+1}OH)$ for k = 5, 6, 7, 8 and 10, and l = 2 and 3. These mixtures are miscible over the whole concentration range.

The H_m^E values for five of these sixteen systems have been published [1–9] and are compared with our results.

EXPERIMENTAL

The purification procedures used [10–12] and the flow calorimeter (LKB 2107) method for determining H_m^E have been previously described [13].

RESULTS

The H_m^E results for each of the sixteen systems are given in Table 1 together with the deviations, Δ , calculated from the smoothing equation

$$\Delta(J \text{ mol}^{-1}) = H_m^E(J \text{ mol}^{-1}) - x(1-x) \sum_{r=0}^r A_r (1-2x)^r$$
(1)

where x denotes the mole fraction. The coefficients, A_r , are given in Table 2.

0040-6031/91/\$03.50 © 1991 – Elsevier Science Publishers B.V. All rights reserved

158

Molar excess enthalpies, H_m^E for $(xC_kH_{2k} + (1-x)C_lH_{2l+1}OH)$ at 298.15 K and the deviations, Δ , from eqn. (1) and the coefficients of Table 2

			······				E	
x	$H_{\rm m}^{\rm L}$	Δ	x	$H_{\rm m}^{\rm L}$	Δ	x	$H_{\rm m}^2$	Δ
	(J	(J		(J	(J		(J	(J
	mol ·)	mol -)		mol -)	mol -)		mol)	mol ·)
xc-C ₅ H	$x_{10} + (1 - x)$	CH ₃ OH						
0.0747	249.8	- 4.9	0.3754	556.1	-0.2	0.6735	513.6	-0.7
0.1332	375.9	4.0	0.4072	562.0	-0.7	0.7964	438.1	0.7
0.1953	452.5	1.3	0.4817	566.3	-0.6	0.8523	375.4	- 3.7
0.2410	491.4	0.2	0.5762	553.7	2.7	0.9188	269.5	3.3
0.3009	526.0	- 2.1						
$xc-C_5H_1$	(1-x)	C₂H₅OH						
0.0639	119.1	-4.7	0.4114	482.8	-4.3	0.6659	537.2	3.2
0.1251	210.3	-1.2	0.4836	519.4	-0.1	0.7752	497.7	- 9.4
0.1911	297 .0	5.9	0.5732	538.7	2.2	0.8863	404.5	3.6
0.2398	346.8	2.7	0.6205	541.0	3.7	0. 9493	240.7	1.8
0.3365	430.9	- 3.9						
$xc-C_5H_1$	(1-x)	C ₃ H ₇ OH						
0.1005	127.2	-2.2	0.4839	455.0	- 5.0	0.7215	528.4	2.0
0.1833	200.4	1.0	0.5220	478.2	-1.9	0.7965	512.3	- 5.2
0.3001	311.7	3.8	0.5610	500.7	4.6	0.8512	480.7	- 3.3
0.4070	405.1	-0.7	0.6198	520.3	7.4	0. 91 83	376.4	6.6
0.4536	437.5	3.3	0.6833	521.0	-2.5	0.9581	232.8	-0.3
$xc-C_5H_1$	(1-x)	CH ₃ CH(O	H)CH ₃					
0.1025	192.7	- 3.5	0.4137	604.8	-4.2	0.7757	662.8	-6.7
0.1745	304.3	-0.1	0.5225	685.9	-0.9	0.8427	595.6	0.2
0.1806	317.0	3.7	0.6040	715.3	3.7	0.9183	419.4	2.4
0.2971	477.8	2.5	0.6302	715.8	2.0	0.9503	291.2	0.8
0.3497	539.6	-1.2	0.7251	699.6	1.8			
xc-C ₆ H ₁	$_{2} + (1 - x)$	C₂H₅OH						
0.0983	241.1	0.7	0.4884	632.0	-2.4	0.7150	602.5	2.8
0.1736	361.5	-1.9	0.5317	637.7	-2.1	0.8009	540.5	- 8.7
0.2558	473.5	4.2	0.5844	639.4	2.3	0.8619	475.0	- 5.6
0.3586	570.1	0.2	0.6533	627.5	5.6	0.8967	426.2	9.9
0.4530	621.5	- 2.7						
xc-C ₆ H ₁	$(1-x)^{2}$	С₃н₂он						
0.1436	230.7	- 1.7	0.5543	604.5	- 3.8	0.7483	592.3	- 5.0
0.2511	356.7	3.2	0.6018	619.5	2.8	0.8198	554.2	-1.5
0.3642	479.4	-0.9	0.6415	621.3	3.6	0.8936	451.6	1.1
0.4157	528.0	-1.4	0.6935	614.8	2.7	0.9344	338.2	1.4
xc-C ₆ H ₁	$_{2} + (1 - x)$	CH₃CH(O	H)CH ₃					
0.1347	313.6	-4.2	0.5536	826.1	-0.9	0.7455	766.2	-6.1
0.2619	542.1	10.2	0.5942	836.7	4.6	0.8362	651.4	7.6
0.3557	663.0	- 5.5	0.6251	835.3	5.4	0.8991	517.6	8.4
0.4471	762.3	-6.1	0.6895	812.0	2.8			

				F				
x	$H_{\rm m}^{\rm E}$	Δ	x	$H_{\rm m}^{\rm L}$	Δ	x	$H_{\rm m}^{\rm E}$	Δ
	(J	(J		(J	(J		(J	(J
		mol ⁻¹		mol ⁻¹)	mol^{-1})		mol^{-1})	mol^{-1})
$xc-C_7H$	$_{14} + (1 - x)$	C₂H₅OH						
0.0889	243.6	- 2.2	0.5299	660.9	- 3.6	0.7526	592.1	- 6.0
0.1641	383.4	0.1	0.6003	657.6	3.2	0.8369	530.3	-1.7
0.2447	499.7	4.0	0.6646	639.8	4.3	0.8891	449.3	-0.7
0.3431	594.8	-1.2	0.6856	630.6	2.7	0.9521	265.0	5.2
0.4076	635.9	2.1						
xc-C ₇ H	$_{14} + (1 - x)$	C ₃ H ₇ OH						
0.0913	171.6	- 5.2	0.4174	557.7	-2.6	0.6589	636.0	1.8 -
0.1685	296.5	4.6	0.5438	619.2	- 2.1	0.7026	626.7	-2.4
0.2519	402.8	3.1	0.5850	633.6	3.4	0.8655	495.7	- 9.8
0.3516	503.0	- 3.6	0.6073	636.2	3.2	0.9132	407.2	10.1
xc-C ₇ H	$_{14} + (1 - x)$	CH ₃ CH(0	OH)CH3					
0.0969	259.8	0.9	0.5051	837.1	2.7	0.6320	865.2	-7.0
0.1776	440.6	0.4	0.5462	860.1	3.3	0.7298	815.2	6.3
0.3191	656.4	- 5.5	0.5732	865.0	-1.9	0.7998	690.6	1.9
0.4205	774.6	5.9	0.6003	867.9	-4.6	0.9008	388.0	- 3.0
$xc-C_8H_1$	$x_{16} + (1 - x)$	C₂H₅OH						
0.0793	237.1	-1.6	0.4362	615.0	- 3.6	0.7244	575.8	2.2
0.1473	369.4	-1.7	0.4718	623.2	-1.4	0.8065	517.3	-6.1
0.2182	472.6	3.1	0.5023	624.6	-1.6	0.8695	442.8	- 5.9
0.3047	557.2	3.9	0.5632	623.4	1.9	0.9219	345.1	9.7
0.3791	596.3	- 2.7	0.6237	614.0	5.5			
$xc-C_8H_1$	$(1-x)^{-1}$	C ₃ H ₇ OH						
0.0430	95.5	- 2.0	0.5220	617.6	3.6	0.8202	563.4	-1.8
0.1531	284.5	-0.5	0.5663	632.2	1.1	0.8772	476.6	-6.3
0.2314	394.2	2.8	0.6095	638.7	3.3	0.9151	395.2	3.9
0.3902	552.7	-6.0	0.6433	637.9	2.4	0.9542	255.3	5.0
0.4402	584.6	1.8	0.7015	628.2	-0.2			
$xc-C_{R}H_{16} + (1-x)CH_{2}CH(OH)CH_{3}$								
0.0631	192.9	- 5.2	0.5287	788.6	0.2	0.7033	767.4	- 4.6
0.1371	377.2	2.4	0.5852	796.1	2.1	0.7828	712.9	-7.2
0.2371	558.2	5.4	0.6093	796.8	3.5	0.8512	630.3	5.5
0.3402	675.3	- 5.6	0.6459	793.1	4.4	0.9217	430.1	0.3
0.4458	757.1	-2.6						
$xc-C_{10}H$	$l_{20} + (1 - x)$)C ₂ H ₅ OH	I					
0.1168	450.2	0.7	0.4037	489.6	1.1	0.6513	450.4	1.5
0.2081	367.4	-1.3	0.4818	496.5	-1.3	0.7512	370.9	-1.4
0.3034	445.6	- 0.5	0.5362	490.1	2.4	0.8921	211.0	0.7
0.3523	473.0	1.7	0.6034	474.3	1.7	0 .93 17	117.4	-0.5

TABLE 1 (continued)

x	$H_{\rm m}^{\rm E}$	Δ	x	H _m ^E	Δ	x	H _m ^E	Δ
	(J	(J		(J	(J		(J	(J
	mol^{-1})	mol^{-1}		mol^{-1})	mol^{-1})		mol^{-1})	mol^{-1})
xc-C ₁₀ H	$\frac{1}{1}$)C ₃ H ₇ OH	ł					
0.1394	246.2	-2.4	0.5350	489.4	-1.6	0.7236	460.2	1.5
0.2453	353.7	4.1	0.5736	494.2	0.9	0.7850	419.9	-0.7
0.3465	420.8	0.1	0.6019	494 .0	1.8	0.8693	320.1	- 10.0
0.4502	466.6	-4.2	0.6575	485.6	2.8	0.9321	223.1	10.3
$xc-C_{10}H_{20} + (1-x)CH_3CH(OH)CH_3$								
0.0729	233.1	6.1	0.5037	662.2	-4.1	0.6512	658.2	1.7
0.1467	353.2	-6.7	0.5448	668.2	- 4.7	0.7126	636.2	9.9
0.2172	448.0	-1.1	0.5819	670.0	-2.5	0.8382	493.3	- 11.9
0.3560	593.3	8.7	0.6156	668.9	1.7	0.9301	312.6	7.3
0.4362	638.2	-1.1						

TABLE 1 (continued)

TABLE 2

Smoothing coefficients, A_r , for $xc-C_kH_{2k} + (1-x)C_lH_{2l+1}OH$

k	Alkanol	A ₀	<i>A</i> ₁	A ₂	A ₃	A ₄
5	CH ₃ OH	2262.1	194.0	958.3	-226.7	1345.0
5	C₂H₅OH	2097.1	- 542.5	507.3	- 1288.6	1582.6
5	C ₃ H ₇ OH	1876.2	- 1068.9	300.3	-1407.0	2295.6
5	CH ₃ CH(OH)CH ₃	2699.9	- 1149.8	493.0	- 1254.6	1666.8
6	C ₂ H ₅ OH	2546.4	- 324.6	495.3	-1270.7	1876.9
6	C ₃ H ₇ OH	2350.1	- 1005.1	104.3	- 1197.5	2467.1
6	CH ₃ CH(OH)CH ₃	3223.4	- 1104.3	280.7	- 1034.4	1978.1
7	C ₂ H ₅ OH	2655.7	- 153.3	643.9	- 1463.8	1935.0
7	C ₃ H ₇ OH	2425.1	- 828.2	762.7	- 1331.1	1346.1
7	CH ₃ CH(OH)CH ₃	3324.0	-1307.3	1437.0	661.1	-1402.0
8	C ₂ H ₅ OH	2505.1	-24.3	961.5	- 1114.6	1533.1
8	C ₃ H ₇ OH	2456.4	- 719.4	793.3	- 1372.3	1369.4
8	CH ₃ CH(OH)CH ₃	3125.7	- 590.4	1262.9	-1378.6	1197.5
10	C ₂ H ₅ OH	1988.6	133.5	360.3	198.4	76.0
10	C ₃ H ₇ OH	1940.8	- 434.6	507.8	- 205.4	956.1
10	CH ₃ CH(OH)CH ₃	2661.3	- 538.8	452.4	- 301.8	1905.9

DISCUSSION

The H_m^E values for five of the sixteen systems investigated here have been published previously. The results of Stokes and Burfitt [1] for cyclopentane plus ethanol and cycloheptane plus ethanol are within 5 J mol⁻¹ of the smoothing curves fitted to our results, except at very low alcohol concentrations. For cyclohexane plus ethanol, our results are within 10 J mol⁻¹, in the worst case, of the results given by Nagata and Kazuma [2] and also by

Fig. 1. Interpolated excess molar enthalpy data, $H_m^E(x=0.5)$, for $(xc-C_kH_{2k}+(1-x)C_lC_{2l+1}OH)$ as a function of $k: \circ$, CH₃OH; \bullet , C₂H₅OH; \triangle , C₃H₇OH; and \blacktriangle , CH₃CH(OH)CH₃.

Stokes and Adamson [3]. Our results for cyclohexane plus 2-propanol are within 10 J mol⁻¹ of the smoothing curves based on the data of Veselý et al. [4] and Nagata et al. [5].

There are four sets of data in the literature for the H_m^E value for $(xC_6H_{12} + (1-x)C_3H_7OH)$ [6–9]. Our results are within 5 J mol⁻¹, in the worst case, of the smoothing curve for the data given by Nagata and Kazuma [6] but almost 30 J mol⁻¹ higher than the published data of Veselý and Pick [7,8] and 80 J mol⁻¹ lower than the published data of Belousov et al. [9].

The H_m^E values for all the sixteen systems discussed here are positive, with H_m^E (maximum) ranging from 490 to 866 J mol⁻¹. This reflects the breakdown of the hydrogen bonding between the alkanol molecules on mixing with a cyclo compound.

For each particular alkanol, the value of $H_m^E(\text{maximum})$ or $H_m^E(x=0.5)$ increases with increasing cycloalkane carbon number from k = 5 to k = 7 and decreases from k = 7 to k = 10. This can be seen in Fig. 1 where $H_m^E(x=0.5)$ has been plotted against k. The concentration of the cycloal-kane at which $H_m^E(\text{maximum})$ occurs for a particular alkanol, decreases with increasing cycloalkane carbon number. For example for ethanol systems, $H_m^E(\text{maximum})$ occurs at x = 0.61 for k = 5, x = 0.56 for k = 6, x = 0.54 for k = 7, x = 0.51 for k = 8 and x = 0.45 for k = 10.

For cyclopentane systems, $H_m^E(x=0.5)$ decreases with increasing chain length of the l-alkanols from l=1 to l=3. The same is true for each of the other cycloalkanes for l=2 and 3. This can be attributed to the decreasing hydrogen bonding between alcohol molecules as l increases from 1 to 3. The $H_m^E(x=0.5)$ value for $(xc-C_kH_{2k} + (1-x)CH_3CH(OH)CH_3)$ is larger than $H_m^E(x=0.5)$ for $(xc-C_kH_{2k} + (1-x)C_2H_5OH)$ or $(xc-C_kH_{2k} + (1-x)C_3H_7OH)$ for k between 5 and 10. This implies a stronger hydrogen bonding between 2-propanol molecules than between ethanol molecules or between 1-propanol molecules. This could be due to the inductive effect of the methyl groups of 2-propanol.

ACKNOWLEDGEMENTS

The authors wish to thank the FRD (South Africa) and Rhodes University for financial help.

REFERENCES

- 1 R.H. Stokes and C. Burfitt, J. Chem. Thermodyn., 5 (1973) 623.
- 2 I. Nagata and K. Kazuma, J. Chem. Eng. Data, 22 (1977) 79.
- 3 R.H. Stokes and M. Adamson, J. Chem. Soc., Faraday Trans. 1, 73 (1977) 1232.
- 4 F. Veselý, P. Uchytil, M. Zábranský and J. Pick, Collect. Czech. Chem. Commun., 44 (1979) 2869.
- 5 I. Nagata, K. Fujiwara and Y. Ogasawara, J. Chem. Thermodyn., 10 (1978) 1201.
- 6 I. Nagata and K. Kazuma, J. Chem. Eng. Data, 22 (1977) 79.
- 7 F. Veselý and J. Pick, Collect. Czech. Chem. Commun., 32 (1967) 4134.
- 8 F. Veselý and J. Pick, Collect. Czech. Chem. Commun., 34 (1969) 1854.
- 9 V.P. Belousov, L.M. Kurtymina and A.A. Kozulyaer, Vestn. Leningr. Univ. Fiz., 10 (1970) 163.
- 10 T.M. Letcher, J. Chem. Thermodyn., 16 (1984) 805.
- 11 T.M. Letcher, C. Heyward, S. Wooten and B. Shuttleworth, Fuel, 65 (1986) 891.
- 12 T.M. Letcher, S. Wooten, B. Shuttleworth and C. Heyward, J. Chem. Thermodyn., 18 (1986) 1037.
- 13 T.M. Letcher and B.W.H. Scoones, J. Chem. Thermodyn., 14 (1982) 703.